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AbstmcL For multimode systems of deformed aYillatorS mvarianl under the aclions 
of the quantum groups XIq(") ,  SU,(nlm), GL,,,(n) and GLp,q(nlm) the number 
operators are constructed explicitly in terms of the creation and annihilation operaton. 
The relation between the various kinds of deformed oscillator systems, representations of 
these oscillator algebras in terms of modina tes  and deformed derivatives, realizations of 
classical groups in noncommutative spaces, and some aspects of the physical behaviour 
of quantum group mvarianl oscillator systems are alsn discussed. 

1. Introduction 

The theory of quantum groups [l-71 has led to the generalizations (deformations) 
of the oscillator (boson, fermion) algebras in several directions. The development 
of differential calculus in non-commutative (quantized) spaces has identified 
multimode/multidimensional systems of deformed (bosonic, fermionic) creation/ 
coordinate and annihilation/ derivative operators covariant under the actions of 
quantum groups [5-71. Generalization of the usual boson-fermion realizations to 
quantized Lie algebras and superalgebras have resulted in the study of single-mode 
deformed bosons [8,9] and fermions [9-11]. The relation between the various types 
of deformed oscillators has also been clarified [12-141 as somewhat similar to the 
well-known statistics-altering Jordan-WignerKlein transformations. 

A single-mode q-oscillator with the creation (-at). annihilation (a) and number 
(N) operators obeying the relations 

[N, at] = -a' [N, a] = --a ,at - qat-a = 1 (1.1) 

where the deformation parameter q E [-1,m) is real, has also been the subject 
of study by some authors [15-16) in the past also, independent of the recent 
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developments due to the theory of quantum groups. A multimode generalization 
of the q-oscillator, with -1 4 q < 1 

. .  
a.a t -qata .=6. .  : I  I * I  z , j = 1 , 2  ,... (1.2) 

and no commutation relations imposed between the (a i ,  a,)$ plays a central role in 
modelling a possible small violation of the usual BoseFerml statistics [17,18]; note 
that the algebra (1.2) is intermediate between the bosonic (q = 1) and the fermionic 
(q = -1) cases. The relations (1.2) are easily seen to he covariant under the linear 
transformations of the classical special unitary group (i.e. ai - E, Uijaj ,  [U,,] E SU 
group). A set of coupled q-oscillators obeying relations similar to (1.2) has also been 
considered earlier [U] in the context of particle physics phenomenology. A two- 
parameter generalization of the system (1.2) has also been studied recently [19] from 
the point of view of exploring possible new forms of quantum statistics. 

In contrast to a system of the type (1.2), the quantum group covariant systems, 
with which we shall be concerned here, are not covariant under the actions of the 
classical groups and have the coupling between the various modes different from 
(1.2) (see (2.5) below). In this paper we address the problem of constructing the 
number operators for individual modes of multimode systems of oscillators covariant 
under the actions of certain quantum groups, explicitly, in terms of the corresponding 
creation and annihilation operators. The key theorem helping us solve this problem 
is that for the q-oscillator (1.1) the number operator can be written [20] as 

for any q E [-1,m); for q = -1, Le. for a fermion, one should remember the 
condition az = (at)* = 0. 

This paper is organized as follows. In section 2, after a brief review of the 
definition and the R c k  representation of SU,( n)covariant systems of oscillators, we 
present the expressions for the corresponding number operators. In section 3 we 
briefly review the relation between the SU,(n)covariant system and the various sets 
of independent q-oscillators using the formalism of section 2. Section 4 describes 
a procedure for constructing the coherent states of the individual modes for the 
SU,(n)covariant multimode system. In section 5 the known realization of the single- 
mode q-oscillator (1.1) in terms of the Jackson qderivative operator is generalized 
leading to a similar realization of the SU,(n)covariant system of oscillators. 
In sections 6 and 7 the multimode systems covariant under the quantum group 
GL,,,(n), and the quantum supergroups SU,(nlm) and GL,,,(nlm), are studied 
along the same lines as the study of SU,(n)covariant systems in sections 2-5. In 
section 8 it is shown how classical groups can be realized in non-commutative spaces 
using q-oscillator algebras. Tb conclude, in section 9 some interesting observations 
are made on the physical behaviour of the multimode systems of oscillators with 
quantum group covariance. 

2. The SU,(n)covariant multimode system of q-oscillators 

An SU,(2)-matrix can be written in the form 

(:* a".") 
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with non-commuting elements; the deformation (quantization) paramter q is a real 
number and the star operation is involutional ((a*)* = a, (b*)*  = b). The 
commutation relations among the (variable) elements (a ,b,a*,b*)  are fixed by the 
conditions 

-b* a* 0 1  
(2.2) 

The conditions (2.2) are the q-analogues of the conditions to be satisfied by any 
classical special unitaly matrix, namely, U U f  = Ut U = I and det U = 1. When 
q = 1 the *-operation corresponds to the usual complex conjugation and the 
quantum SU9(2)-matrix becomes the classical SU(2)-matrix with a ,  b E C. Concrete 
realizations of the nomcommutative elements of these quantum matrices can also be 
given (see [4,21]). 

A pair of q-oscillaton with (A, ,AI)  and ( A 2 , A J )  as the (annihilation, creation) 
operators is an SU,(Z)-covariant system if 

A I A ,  = qA,Al AIAi = qAlA, 

A,Ai  - qZAiA, = 1 (2.3) 

AZA; - qZA;A, = [ A , , A i ]  E 1 + (4’- 1)AfAl.  

Throughout, ( )) denotes the Hermitian conjugate of ( ). By SUq(2)covariance of 
the system (2.3), it is meant that the linear transformations 

( ’  -b* a* q b ) ( A I ) = ( A i )  A ,  A; (AI  Ai)(;;* :b) = ( Ait A ? )  (2.4) 

lead to the same commutation relations (2.3) for (A i ,  Ait) and ( A i ,  A:) when the 
SU,(2) matrix elemenu ( a , b , a * , b * )  are assumed to commute with ( A , , A i )  and 
(A,,Al). It should be noted that the particular coupling between the two modes as 
specified in (2.3) is completely dictated by the required SU9(2)-covariance. 

Generalization of the above scheme to the n-dimensional case leads to the 
SU,(n)-covariant system of oscillators: with q as a real number, i, j = 1,2,. . . , n 

A i A j  = qAjAi i < j (2.5a) 

A i A f  = qAjAi  

AIAj  - q2AiA, = 1 

i # j (2.56) 

The operators (AI,  A i )  represent the coordinates and corresponding partial 
derivatives in a non-commutative hyperplane, or form the qdeformed quantum 
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mechanical phase space [MI. The SU,(n)-covariance is retained when q is replaced 
by q-' provided the ordering of the indices { i  = 1,2, . . . , n) is reversed. 

The Fock representation of the multimode oscillator system defined by the 
relations (2.5) can be. easily constructed [SI. Assume the existence of a set of 
Hermitian number operators { N , )  corresponding to the individual modes such that 

[Nij.Aj] = * J - - j  !.Mi, N j !  = 0. (2.6) 

Let (0) = (O,O, . . . ,0) be the unique ground state of the system, defined by 

NilO) = 0 A,IO) = 0 (2.7) 

n;;";;::llnn = 0,!,2 ,... he the. ":!.%e set of and { ! E i > E 2 j . ~ ~ j E . n )  
orthonormal number eigenstates 

N i l n , , n 2 , .  . . , n i , .  . . n,) = ni ln lrn2, .  . . ,n i , .  . . ,n,) 

(nl,n;, . . . , n:, . . . , n;Inl,nZ,. . . , n i l .  . . , n,) = -- 6,;". . 
n (2.8) 

, I  

is1 

Then, it follows from the commutation relations (2.5) that one can write, in general, 
up to phase factors 

~ ~ l n ~ , n ~  , . . . ,  nj  ,..., n,) = { h j ( n l , n z  ,..., nj))1/21n1,n2 ,..., n . - l ,  3 ..., n,) 

(2.9) A ] I n l , n 2 , .  . . , n j , .  . . ,nn) 
= { h j ( n l , n 2 , .  . . ,nj + 1)) 112 In1,n2,. . . ,nj  + 1,. . . ,n") 

where the hjs  satisfy the recursion relations 

h l ( n ,  + 1) - q2h1(n,) = 1 

hz(n1+ L n 2 )  = q2h2(n1,n2) 

h,(O) = 0 

hZ(nl,?'z+ 1)-q2h2(nl?n2)  = 1+(q2-1 )h l (n l )  

h,(n,,O) = 0 

(2.10) 

h j ( n l , n 2 , .  . . , n j  + 1)-q2hj (nI ,  n z , .  . . , n j )  = l+ (qZ- l )  hi(nl,n,, . . . ,n,) 
i < j  

2 h j ( n l , n 2 , .  . . ,n ,  + 1,. . . ,n j )  = q h j ( n l , n 2 , .  . . ,n,, .  . . ,nj) 
h j ( n l , n 2 , .  . . , n j - l , O )  = 0. 

Solving the equations (2.10) recursively one can see that 
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the notation [.IQ, in general, will stand for (Q" - I ) / (Q - 1). Thus, the equations 
(2.8), (2.9) and (2.11) provide a faithful representation of the commutation relations 
(2.5) and (2.6). Now, it is seen that for any k 2 1 

(.I,.;,. . . , n:,. . . , n h J ( A j )  t k  A,  k Inl, n 2 , .  . . , n,, . . . , n,) 

where [n]! = [n][n - 1][n - 21..  .[2][1], [ O ] !  = 1. Hereafter, for the deformed 
numbers ([ IQs) the subscript Q, representing the base parameter, will not be explicitly 
written whenever it is known clearly from the context The matrix elements of 
A:( are given by 

(ni, n;,. . . , n:, . . . , n : , ~ ~ ; ( ~ j ) k ~ n , ,  n2,. . . , n,, . . . , n,) 
(2.13) 

for any k 2 1. This shows that we can write 

(2:14) 

Let us now specialize (2.12) and (2.13) to the case k = 1. The result is a set of 
operator identities 

It is in view of the identity (2.19) that the operator ELl A!Ai has been called 
the twisted (total) number operator [SI; in the limit q - 1, ( A i ,  A ! )  i ( b i ,  b!), the 
bosonic result is recovered (Cy=1 bfb; = the total number operator). 

Now, we shall express the number operators { N i }  corresponding to the individual 
modes using the above results. PI this end, let us recall that the expression (1.3) for 
N in the case of the single-mode q-oscillator (1.1) is due to the identity 

= n  n = 1 , 2 , . .  * ( l - Q ) k  In1Q! 

( 1  - Q k )  [n - kIQ! 
k = l  

(2.16) 
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for any complex number Q [22,23]. In view of this identity (2.16) (with Q z q2) it 
follows from (2.12) that 

(2.17) 

In other words, the number operators { N, I j = 1 ,2 , .  . . , n )  are uniquely determined 
by the following formulae 

(2.18) 

One may also check directly, using (2.5), that these N,  satisfy the required relations 
(2.6). It is seen from (2 .5~)  and (2.1%) that we have 

i<j 

So, the expression for N j  (2.18) can also be written as 

where {. . .)-k is to be understood as a power series expansion. 
It may be noted that the equation (2.19) allows one to write, for q # 0 

J 1 

N ,  = In{l + ( q 2  - 1) A!A,)/2ln(q) j = 1 , 2 , .  . . , n. 
t=1 ,=1 

Fbr the single-mode q-oscillator (1.1) the analogue of (2.19) is given by 

[a,a']= l + ( q - l ) a ' , = q N  

leading to the result (see [18,24]) that, for q # 0 

N = l n { l + ( q - l ) a t a ) / l n ( q )  

(2.19) . .  

(2.20) 

(2.21) 

(2.22) 

(2.23) 

Thus, the eq!xtio!! (2.21) i! the extessin!? nf (2.23) tn !he mu!timod_c case (2.5). 
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3. Relation between the SU,(n)<ovariant system and the other Sets of independent 
q-oscillators 

As already mentioned in the introduction the SU,(n)covariant system of coupled 
q-oscillators can be. related 112-141 to the various sets of independent q.oscilIators 
through Jordan-WignerMein-like transformations. In this section let w review this 
relationship briefly using the above framework 

From (2.8), (2.9) and (2.11) it is straightfonvard to see that if one defines 

a I = q-E.<, N, A, NJ = N I  (3.1) 

then ( a j ,  a:) satisfy the algebra of independent q-oscillators, with relations of the 
form (1.1) 

one arrives at the algebra 

ai,! -q6 i ja?a .  = 6 . .  -Ni 01 ai,! - q-6'!a!a.  = h i j q  N, 
(3.4) 

I I 1 v q  J 1 :  

[ U i , U j ]  = 0 
corresponding to the set of independent q-oscillators used in the Jordan-Schwinger- 
type realizations of various qdeformed Lie algebras [8]. Finally, to obtain the 
ordinary boson algebra one has to define 

[ a .  1'  N . ]  J = 6 - a .  S J  ' [Ni,Mj] = O  

as is clear from the matrix representation of { A j }  given above. 
It is obvious that the above maps from { A j }  to { c r j } , { a j }  and { b j }  are invertible 

It is interesting to see that when q = -1 the operators ( A j , A j )  correspond 
to anticommuting bosons, the building blocks in the well-known Green ansatz for 
constructing parabosons. Then the map { b j )  -+ { A j }  in (3.60) reduces to 

A . ( q  I = -1) = e  i*C.,, b!b ,  b j  . (3.7) 

This is precisely the basis of a simple description of a parabose field in terms of a 
single boson field [25]. 
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4. Coherent states 

Regarding the construction of coherent states for the single-mode q-oscillator (1.1) 
the following observation had been made in [20]. If we write the expression for N 
given by (1.3) as 

then 

[a,a'X] = 1 

as is obvious. Consequently 

e-".Ytxae*.Ytx = a + z  

an:! hence :he CG!Kes: S!B!PS of *e q=asci!!ntar (1 , may be 

12) - e'n'x 10) (4.4) 

up to normalization, such that 

alz) = 212). (4.5) 

Now, it is straightforward to extend the above procedure to construct the coherent 
states of the individual modes of the sytem (2.5). Defining, for each j 

we have 

J = A , + z .  (4.7) 
e - 2 A : X , ~  ezA:X 

J 

Thus, the states 

lzJ) - ezJA:XJ I 0) 

A,lZj) = 41z,I',). (4.9) 

(4.8) 

are coherent states of the j t h  mode such that 

It is to be noted that since { A J  I j = 1,2,. . . , n) do not commute with each other 
a state can be an eigenstate of only one of the AJs  with a non-zero eigenvalue. 
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5. Realization in terms of qderivatives 

As is known, the single-mcde qacillator algebra (1.1) can be realized as 

where D, is the Jackson qderivative operator (see [14,26]). The operators a and 
at are Hermitian conjugates in this realization when considered in a suitably defined 
qBargmann space [27. This realization can be extended to the multimode system 
(2.5) using the map {aj) i ( A j )  defined by (3.6c). Let (zl ,z2, . .  . ,z,) be an 
ordered set of commuting coordinates and ( a , 2, 2) be the corresponding 
derivatives. Then, we can define 

- ? " ' > a Z , ,  

A ; ~ J ( Z ~ , Z ~ , .  . . ,z.+. I . . , z n )  = zj+(qZi,qz2,. . , , q r j - ~ , Z j , f j + i , .  . . , z n )  

A;+(z1 ,~21. .  ., z j l . .  . ,z,,) 

(see also [14]). It can be verified easily that the relations (2.18) are consistent with the 
definitions (5.2), using the following identity [U]: in the case of the single variable z 

(5.3) 

The q-derivative operator defined by (5.1) has been used 1281 to deform the one- 
dimensional SchrBdinger equation. The set of ordered qdeformed partial derivatives 
defined by (5.2) may be useful in experiments with deformed Schrodinger equations 
in higher dimensions. 

6. GL,,,(n)eovariant system of deformed oscillators 

The quantum group SU,(n) considered above is a special case of GL,(n), the q- 
deformed version of the ndimensional general linear group. In the deformation of 
the classical group GL( n )  one can consistently introduce, in general, in( n - 1) + 1 
parameters [29,30]. In this section we shall consider the coupled multimode oscillator 
systems covariant under GL,,, ( n )  with WO independent deformation parameters. 

A multimode system of oscillators with {Af I j = 1,2,. . . , n )  and {A; I j =, 
1.2, . . . , n )  as the creation and annihilation operators, or the non-commutative 
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differential calculus with coordinates {At I j = 1,2, .  .. ,?I) and derivatives 
{A; I j = 1 , 2 , ,  . . ,n ) ,  will have GL,,,(n)covariance if the following relations 
are satified 

A;A: = q A ; A ;  A f A f  = p - ' A f A f  i < j 
J 

if ( p , q )  are replaced by ( p - l , q - I )  respectively the orderings < and > are to be 
interchanged (see (301 for details). In general, the deformation parameters p and 
q can be independent non-zero complex numbers. When p = q the above system 
(6.1) becomes GL,(n)avariant .  Note that (A; ,  A;) can be Hermitian conjugates 
of each other only when p = q*. 

First, as an example, we shall consider the two-dimensional case. Let a GLp,q(2) 
quantum matrix be written as 

T = ( E  T) 
where the matrix elements are required to obey the commutation relations 

a b  = pba cd = p d c  ac  = qca bd = qdb 

pbc = qcb a d  - d a  = ( p q -  1)bc. 
(6.3) 

The quantum determinant of T is defined by 

det T = ad - pqbc (6.4) 
P.9 

and is noncommuting with the elements of T. One can however define an inverse 
quantum matrix for T 

T T - I  = T - ~ T  = 1 

(see [31,32] for more details). Now, it may he checked that for a pair of oscillators 
the algebraic relations 

A t A + -  -1 t t ALA; = q A ; A ;  1 2 - P  A 2 4  

A;A: = pA:A; 

A; AT - p q  A: A; = 1 

A;A: - p q A : A ;  = 1 + ( p q  - 1 ) A : A ;  

A;A: = qA:A; 
(6.6) 
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a special case of (6.1) corresponding to n = 2, remain invariant under the GLp,,(2) 
transformations 

with the assumption that the matrix elements (T, , )  commute with {A? 1 i = 1,2}. 
When p = q is a real parameter and d = a*, c = -b* under a *-involution GLP,,(2) 
reduces to Uq(2); then, the quantum determinant is a central element of the algebra. 
With the further restriction that the quantum determinant (aa* + qzbb*) is equal to 

We shall now briefly indicate the extension of the results discussed for the 
SU,(n)wvariant system (2.5) to the case of the GL,,,(n)-coMriant system (6.1). 
As before, let us seek the expressions for a set of independent number operators 
{Ri I i = 1,2,. . . , n] in terms of { A :  I i = 1,2,. . , , n) such that 

1, U$) - SU,(2). 

[R,,.",] = 0 [ R i , A f ]  = 3 A i j A f .  (6.8) 

r,,,ide:i,g the s p m  af sa-be: eigexke3 {Izl,zz,. . . , z ,  . . . , z,) lil ,  z 2 , . .  . , 1 
nj, . . . , n ,  = 0,1,2,. . .} defined by 

Rjlnl,n2,. . . ,nj,. . . ,nn) = njlni ,  nZ,. . . , n j , .  . . ,nn) 
(6.9) 

Ai(n1,  T L ~ ,  . . . n j - l , O ,  nj+l , .  . . ,n,,) = 0 j = 1,2, . . . , n 
the analogues of the equations in (2.9) and (2.11) read 

A;Jn,,n2 ,..., nj ,..., n, )=h; (n i ,n2  ,..., nj) lnl ,nz  ,..., n .  I -1 ,..., n,) 

AfIni,nZ,.  . . ,n j , .  . . ,n,) = h f ( n i , n Z , .  . . , n j  + l) lni ,nZ,.  . . , n j  + 1,. . . ,n,) 

hf(nl,n2 ,... ,n.) J = pCs<J"*([nj]pq)i/z. 

Starting from the vacuum state IO,O,. . . ,0) one can build the excited states 

(6.11) 
n i ,n* ,  . . . ,?I,,= 0,1,2,. . . . 

Let (O,O, .  . .01 be the dual (bra vector) corresponding to the vacuum ket 
)O,O,. . . ,D) such that (O,O, . . . ,010,0,. . . ,0) = 1 and (O,O, . . . ,Ol A t  = 0 for 
i = 1,2,. . . , n. Then, the set of bra vectors 

(6.12) 
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define the dual of the space. of number eigenkets (6.11) with 

(n;,.; I . . .  ,n61.1,.2 ,..., nn) = n%+,. (6.13) 
i= l  

NOW, for the matrix elements of (A:)~(A:)~ we have 

(.;,.;, . . . ,n;, . . . , . : , I ( A ~ ) ~ ( A Y ) ~ ~ ~ ~ , ~ ~ ,  . . . n j , .  . . ,nn) 
for nj < k 

n =(" ( p q ) k x + n '  ([nj]!/[n, - k]!) n6,,,, for n, 2 k (6.14~) 

i= l  

(.;,.;, . . . ,n;, . . . , . : , I ( A ~ ~ ) ~ ( A ~ ) ~ ~ ~ ~ , ~ ~ ,  . . . n j , .  . . , n n )  

n 

= (pq)",<Jn' (In, + k]!/[njl!) n6,:,,. 
,=l  

Specializing these equations to the case k = 1 we get the operator identites 

(6.146) 

(6.15a) 

(6.15b) 

[AY,  Af] = ( p q ) x s < >  '9 (6.1%) 

(6.15d) 

From (6.14~) and the identity (2.16) (now with Q = pq) the number operators are 
identified to be 

m 

- ( l - p q ) k  ( A f ) k ( A ; ) k { l + ( p q - l ) x A f A ; ) - k .  
i < j  

- (1  - pkqq") 
k = l  

The analogue of the formula (2.21) reads 

j j 
f i i  = ln{l + (pq - 1) A:A;) /  In(pq). (6.17) 

i= l  i=I 
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Defining 

Q- = q-Ci<iN*A- a+ = p-C.<jfinA+ N, = Nj. (6.18) 
J J f J 

One obtains the algebra 

-(pq)6*ia+nT J :  = 6.. : J  or q a f  - m f a ;  = 6ij(pq)*j (6.19) 
[ n ; , n f ]  = 0 [Nj,Qf] = &%.a' [Nj,Nj] = 0. 

11 J 

The inverse map {m*) -+ {A*} is 

A: J = qx:iciRi ai - A t  I = pC.<i**,t J ,(Ij = Nj. (6.20) 

If we let 

- t - Atp-(:fij' ,+E,<j~*) flj = N. (6.21) 
I J 

a .  J = q-E,<jf iap- i* ,~-  3 a .  J - 

then 

a:a+ - -*uafa? = 6 . .  N~ (6.22) J J J J I J q  
a:a+ - qb'jafaT = 6 . .  -#> or J J  J J * J p  

[a:,af]=O [ $ , a f ] = f 6 i j a f  [ f l i , f l j ]=O.  (6.23) 

The single-mode oscillator of this type (6.22), called (p, q)millator, was introduced 
in 133) to study the Jordan-Schwinger type realizations of two-parameter (p,q) 
quantum algebras (see also [MI). There can also be further generalizations [35]. 
It may be noted that the (p,q)-oscillator gives a unified description of all types of 
qascillators: the qacillator (1.1) (or (3.2)) corresponds to p = 1, when p = q 
the algebra (3.4) is obtained, when pq = -1 one obtains the q-fermion algebra 
derivable by contraction from the quantum super algebra s l , ( l l l )  [lo], and when 
p/q = -1 the resulting q-fermionic algebra [Ill (see also 1361) is derivable from 
the quantum superalgebra osp,(211) 1241. For the single-mode (p. q)-oscillator the 
number operator has been discussed in (231. The inverse map {a*}  -t {A*} is 

AT J = pi'%&:.cifi*a; A+ J = aj t p (W>tE;<jJJ*) N j  =si, (6.24) 

The relation of {Af )  to the boson algebra follows from the matrix representation 

. 

(6.10) 

with the inverse map 



where (zl, z 2 , .  . . ,z,) form an ordered set of commuting coordinates. As already 
noted, the ( A + ,  A-)s  are Hermitian conjugate pairs only when p = q*. In this case 
the (a+,a-)s  also satisfy the relation at = (a- )? .  For a+ and a -  defined by 
(6.21) to be Hermitian conjugates of each other the condition'is that elther p and q 
are real or pq* = 1. The bosonic operators synthesized from the A*s as in (6.25) 
are seen to satisfy the Hermiticity requirement bt = ( b ) t  in the representation (6.10) 
independent of the d u e s  of p and q. 

! 

I. Multimode g-m%ator systems covariant under the quantum supergroups 
SU,(n!m) and GL, , (n !m)  

The systems studied so far are bosonic in the sense that the occcupation number of 
any level is unlimited. The usual fermionic systems for which the occupation number 
of any level cannot exceed one, by the Pauli principle, can also be qdeformed: the 
twisted canonical anticommutation relations [7] read, for an n-level system 

PkPi + qP,Pk = 0 k < 1 t qPlPk = 0 k > 1 

PkPI t qP:Pk = 0 k # 1 PIPI +@(PI  = 1 ( 7 4  

P , P j + q P f P , = l t ( s 2 - 1 ) C P l P k  1 > 1  

& - O h  2 - t 2  = O  k , l = 1 , 2  ,..., n 
.. & < I  . . 

with q E R These relations possess the SU,(n)covariance. exactly in the same way 
as (2.5); in the limit q -t 1 the system (7.1) becomes the (classical) SU(n)avar ian t  
fermionic system. As in the q-bosonic case (2.5); if q is replaced by q-' in (7.1) 
then the ordering of the indices {1 ,2 , .  . . , n} is to be reversed to retain the SU,(n)- 
covariance. 

By combining these qdeformed canonical anticommutation relations (7.1) with 
the qdeformed canonical commutation relations (2.5) one gets systems of oscillators 
covariant under the quantum supergroups {SU,(nlm)). Thus an SU,(nlm)- 
covariant system consists of n q-bosonic(A) and m q-fermionic(B) oscillators obeying 
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the following relations with q E R 

" 
B,B! + BIB, = 1 + ( q 2  - 1) A f A i  

For example, when n = m = 1 in (7.2) we get a supersymmetric pair of qacillators 
( A ,  B) obeying the relations 

A B  = qBA 

AA? - qZAtA = 1 

ABt = qB'A B2 = (Et)' = 0 
(7.3) 

BB' + B t B  = 1 + ( q 2  - 1)A'A 

which remain invariant under the SU,( 111) transformations 

($) = (-(Q*)-'p*(Q*)-'  Q (Q*)-') P (G) 

Here, it is assumed that (a ,a* )  commute with ( A , A t )  and ( B , B f ) ,  and ( p , p * )  
commute with ( A ,  At) and anticommute with ( E ,  E') .  

Now, the construction of the Fock space for the system (7.2) is obtained by 
extending the results of [7] for the case (7.1). 'Tb this end, we shall take the complete 
set of orthonormal eigenstates of n bosonic number operators {A', I j = 1 , 2 , ,  , . , n}  
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and m fermionic number operators { M I  I 1 = 1.2 , .  . . , m )  to be defined by the 
relations 

NjIn,,n2,. . . , n j , .  . .n,;ml,m2,.  . . , m,) 

= njlnl,n2,. . . , n j , .  .. ,nn;m,,m2,. . . ,m,) 

nj  = 0 , 1 , 2  ,... j = 1,2  ,..., n 

Mllnl,n2, ..., n,;ml,mz ,..., ml, ... ,m,) 

The number operators must satisfy the commutation relations 

It is found that one can write, up to phase factors 

Ajln, ,  n2, .  . . , n j ,  . . . n,; ml ,  m2,.  . . , m,) 

= h;(nl, n2, . . . ,n j ) lnl ,  nzr  . . . , n .  - 1,. . . , n,; ml ,  m z , . .  . , m,) J 

AJlnl,n2,. . . , n j , .  . . n,; ml ,  m2, .  . . , m,) 

= hf (n l ,n2 , .  . . ,n j  +l)lnl ,n2,  .. . ,n j  + I , .  . . ,n,;ml,mz,. . . ,m,) 

Bllnl, nZr  . . . , n,;mll m2, . . . , ml,. . . , m,) 

= g;(n1,n2,. .., nn;ml,mz.  ... , m ~ )  

x Inlr n 2 , .  . . , n,; m l ,  m2, .  . . , ml - 1 , .  . . , m,) 
(7.7) 
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Further, we have 

x 10,o ) . . . )  0 (..., 0) 

n l ,  n 2 , .  . . , n,  = 0 , 1 , 2 , .  . . ml,  mz, .  . . , m, = 0 , l  (7.8) 

with the corresponding bra vectors given by I . .  .)+S. Now, the matrix elements of 
( A j ) ' ( A j ) '  and BjB,  are given by 

(n; ,  . . . ,n:, . . . ,nL;m;, . . . ,mhI(Aj)a(Aj)Slnl , .  t . . , n . ,  . . . ,n,;m,,. . . ,mm) J 

for nj < s 

q z r z , < J n a  ([n,]! /[n,  -~]!)n6,,,,,;n6~;,,,~ for nj  3 s 
={O n m 

i = l  j=1 

(7.9n) 

(n; , .  . . ,nk;m; ,..., mi ,..., mkIEfBflnl ,... ,n,;ml .. . ,ml  ,..., m,) 
n m 

= II 6";" ;  6,;,, qz(CLni+C*<i m b ) m l ,  (7.96) 
i = l  j = 1  

Comparing (7%) with (2.12) it is clear that for the bosonic modes ( A )  the 
number operators are given by the same expressions in (2.18) 

(7.10) 

From (7.96) it follows that, for the fermionic modes (E) the number operators are 
given by 

M ,  = B ( B , ~ - ~ Z : = I N ,  

(7.11) 

MI B/Blq-2(Z:=i N-tx*<~ 1 = 2 , .  , . , m. 

Since ml has only the two values (0, l), in the Fock space (7.7) one has the identity 
[ M , ]  = MI, [l - M , ]  = 1 - M,.  With this, the extension of the identities (2.15) to 



It is clei 
if we define 

from the matrix representation of the (B, Bt )s  provide 

f - -(ELI NS+CA<I M * ) B ~  1 - q  

then the ( f , ,  f/)s satisfy the ordinary fermion algebra 

f k f !  + f / f k  = 6 k l  f k f l  + f l f k  = O. 

Defining 

F - -[E:=, NrtEk<t Mk+(MI/2))Bl M~ = M ,  I - q  

one gets a system of anticommuting q-fermions with the algebra 

FkF/+q-6k'FtF 1 k - q  - - M k 6  kI 

FkF, + FIFk = 0 [MkrF/]  = 6klF;. 

(7.12a) 

(7.12b) 

(7.12~) 

(7.12d) 

(7.124 

by (7.7) that 

(7.13) 

(7.14) 

(7.15) 

(7.1Q) 

(7.16b) 

The inverse maps ( f ,  F) - ( B )  are easily constructed. These relations between the 
various q-fermionic systems are the same as in [13]. In the single-mode situation 
the q-fermion algebra (7.16) can be obtained from an Inonu-Wigner contraction 
of the quantum superalgebra sl,(lll) [lo]. It should be noted that there exists 
another single-mode q-fermionic algebra in which one would have qt'* instead of 

in the right hand side of (7 .16~~);  this algebra is obtainable from the quantum 
superalgebra osp,(211) (see [24,36] for further details). As already mentioned these 
two algebras are the two special cases (pq = -1,p/q = -1) of the (p,q)+scillator 
algebra defined in sectiond. Further, it is interesting to note that when q = -1 the 
twisted canonical anticommutation relations (7.1) represent the algebra of commuting 
fermions which are the building blocb to obtain the parafermi algebra using the 
Green ansatz. It may be noted that the coherent states of the bosonic( A) modes are 
given by the Same expressions as in section 4. The coherent states of the fermionic( B )  
modes can be constructed by a straightfonvard extension of the standard procedure, 
using Grassmann variables, employed in the case of ordinaly fermions 

l a , )  -, ( l o )  - s l B f l o ) )  BkIel) = 6kle11el) (7.17) 
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where the Bs are Grassmann variables anticommuting with the ( E ,  Bt)s; (see [37] 
for details). 

Inspired by the relation (7.13) one can write down a realization of the (A ,  E ) -  
operators obeying (7.2) analogous to the realization of the A-operators in section 5. 
Tb this end, we must now consider the functions $ ( z ,  ,..., zn;O1 ,... ,e,,,) where 
( z l ,  z2 ,  . . . , zn) are ordered commuting variables, as before, and (e1, e2, . . . , e ,  ) 
form an ordered set of Grassmann variables ( O k B ,  + B , B ,  = 0). Then, m the space 
of these functions (Grassmann algebra formed by linear combination of monomials 
in 0s with the coefficients being functions of zs (see [38])) 

Aj$(zl, 2 2 . .  . . , zj, . . . , z n ; % A , .  . . ,e,, ,) 
= zj$(qZ1,422,. . . >qzj- l ,Zj , .  . , 1  z n ; 4 , % ,  . . . e , )  

A j d ~ ( z 1 ~ ~ 2 ~ .  . . , ~ j , .  . ., zn;@i,&, . . . $6") 
1 - - {$L(qzl.pz2,. . . ,qzj-,,  &j,Zjt l , .  . . , ~ , , ; e , , e ~ , .  .. ,e,,,) 

(p2 - 1)Zj 
- ~ ( p z l , ~ z 2 , .  . . , 4zj-1, Z,, zj t l . .  . . ,z,; el, e,, . . . , e,,,)} 

B ~ + ( z , , z ~  ,..., ~~;e,~e~,...e, ,... ,e,,,) (7.18) 
= 

= -+ (qz l ,qz2 , . . .  ,qZnr;qeIrqe2 , . .  . .qel..l,ei,...,em) 

q Z 2 , . .  . ,qZ,,; qe,, qe,, . . . , qe,-,, e , ,  . . . ,e,,,) 
B , $ ( Z ~ , Z ~ , .  . . , ~ , , ; e ~ , e ~ ~  .. . e , , .  .. ,e,,,) 

a 
aei 

The two-parameter generalization of the above results can be obtained in a 
straightforward manner. A pair of deformed supersymmetric o$cillators ( A * ,  B*) 
will have GL,,,(lJl)-covariance if the following relations are satisfied 

A - B -  = qB-A-  A t B t  = p-'BfA+ 

A-Bt  = p B f A -  A t B -  = q - 1  B - At 

A-At  - pqAtA- = 1 (B*)' = 0 

B-Bt + B'B- = 1 + (pq - 1)A'A- 

The GL,,( 111)-transformations leaving invariant these relations are given by 

(7.19) 

(7.20) 
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where p ,  q E C/(O) (see [32,39,40] , for more details). In the higher dimensional 
generalization one would have n ( A t ,  A-)-pairs and m ( Bt , B-)-pairs obeying the 
relations 

AYA; = qA;AT A ~ A ?  J = P - l ~ : ~ t  i < j 

1 = 2 , 3 , .  . . , n  

which are left invariant under the GL,,,( nlm) transformations. 
Let us define, analogous to (7.8) 

Inl. n 2 , .  . . , n,; m l ,  mz ,  . . . , m,) 

- (A:)"l(A:)"z . . .(  A~)".(B:)"(B:)" ...( BA)'"- - 
([n11![n21! ...[ n , ] ! ) ~  

x 10,o ,... ( 0;o , . . . )  0) 

n l , n z  ,..., n , = 0 , 1 , 2  ,... m l , m 2 , .  . . , m m  = 0 , l  [n]  = [nIpq (7.22) 

and the corresponding vectors of the dual space 

( n l r n Z 3 . .  . . n , ; m l , m z , .  . ..m,I 

= (0.0 (...( 0;o ( . . . )  01 

(7.23) (B,)"( Bi-l)"'--l . , . (B;)"'l(A,)"" . . . (A;)" '  
X 

( [ n l ] ! [ n z ] ! .  . . [ n , ] ! ) 1 / 2  
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In the space of these vectors the matrix representations of ( A * ,  E*) can be worked 
out using the relations (7.21). Now, the number operators are given by the expressions 
in (6.16) for {flj I j = 1,2,. . . , n}  associated with the n bosonic(A) modes and 

M I -  - B : B ; ( ~ ~ ) - X : = ~ N .  

(7.24) 

for the m fermionic( E) modes. The set of operator identities (7.12) are generalized 
by the replacement of q2 by p q .  Extension of the realization (7.18) to the case of 
( A * ,  E*) is obtained by defining 

A:+(~I,ZZ,.. . , zn;0~,02 , - .  . , O m )  

0 I -  - B:Br(pq) - (C ,"=" .+C~<,~k)  l =  2 , 3 , , , , , m  

= z , + ( p z 1 , p z 2 , .  . . , p z J - l ,  z,, .. .,z,;01,02,.. . ,om) 
A T V X ~ I , ~ ~ . .  . . , z,,;QI,&, . . . ,e ,)  

The matrix representation of the (A*, B*)s can be obtained using (7.24) and noting 
the correspondence 

8. Realization of classical groups in non-commutative spaces 

Based on the discussion in sections 3 and 4, let us now observe that classical groups 
can be realized in non-commutative spaces. Fbllowing (3.1) and (4.6) define 

a! = q- N o  A! 
1 

d. J = r ; . A . q C , < j N *  J J  (8.1) 
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and note that Nj = aidj. Then, it is easy to check that 

[dj,aL] = 6 j ,  [ d j , d k ]  = [ai ,al]  = 0. 

Now, let us observe that 

5.  , k - , k  -atd j , k = l , 2  ,..., n (8.3) 

[ t j t > t I m I  = 6 k t t j m  - 6 j m t I k .  

obey the classical g1( n )  algebra 

(8.4) 

Then, for any classical Lie algebra one can construct the JordanSchwinger-type 
realization by replacing the boson operators (bjb,)  by (Cjlr) respectively; since the 
t j t s  are not Hermitian conjugates of t k j s  we are led to non-Hermitian realizations. 
The interesting aspect of this realization is that the ( E j t )  act in a space with 
non-commutative coordinates ( A i )  and derivatives (Aj )  obeying the commutation 
relations (2.5). In the limit q -+ 1 this realization reduces to the regular Jordan- 
Schwinger realization. It may be noted that one can also define 

~ . = ~ - E . < J ~ , A ~  I N j = A l a j  Ejk=dja, (8.5) 

instead of (8.3) to obtain a similar realization. For example, a realization of the 4 2 )  
algebra is given by 

X c  = aid, X -  = old, H = f ( a i d i  - a ,d2)  t = ;(NI - N z )  (8.6) 

or 

St = Ala ,  

it can be verified easily that these realizations obey the algebra 

X -  = Ala, H = f ( d f a ,  - Ata , )  = f (N,  - N , )  (8.7) 

[H,X*] = A Y *  [Xt ,X-]  = 2H (8.8) 

space 

then 

as required. 
Since the (Aj ,aJ)s ,  or ( a j  , d J ) s ,  obey the Same algebra as the boson operator 

pairs ( b , ,  b t )  (except for the Hermiticity property) one can also extend the other 
boson realizations of classical Lie algebras to obtain realizations in non-commutative 1 .  

defined by the relations (2.5). For example, if we let 

lit = Aid: (or a l a 2 )  t t  Ii- = a2a1 (or d , d i )  
(8.9) 

Ii,, = ;(NI + N, + 1) 

I i , ,  Ii-, Ii,,) form the su( 1,l) algebra. 
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9. Concluding remarks 

The physical signifiance of system of q-oscillators is still only a subject of speculation. 
Here, we shall note a few interesting aspects of a q-bosonic system obeying the 
relations (2.5). Let the Hamiltonian be 

n 

H = x c j A ; A j  
j =1  

with the levels (j) being nondegenerate; in the limit q - 1, H would correspond 
to an n-level system of non-interacting bosons. The ordering of the Ajs may be 
assumed to follow the ordering of the e j $  el < e2 < . . . < E,,.  The energy spectrum 
is given by 

Hln,,n2,. . . , n j , .  . . n,) = E(nl ,n2, .  . . , n j , .  . . , n , ) l n l , n 2 , .  . . , n j , .  . . ,nn) 

nl ,  n2, .  . . , nj.. . . , n,  = 0,1 ,2 , .  . . . 
The striking feature of this system is the correlation throughout the structure. When 
the occupation number of the j t h  level increases by one the excitation energy 

Aj E( n , ,  n2,  . . . , n j ,  . . . , nn) 
= E ( n l , n z  ,..., ( n j + l )  ,..., n , ) - E ( n l , n 2  ,..., n j  ,..., n,) 

= e j q  zzo<jn* + x ~ , q ~ z k < i ~ k  (q2"' - 1) (9.3) 
l > j  

depends on the population of all the levels and the energy parameters ( E , )  of the 
levels higher than jth. In the limit q + 1 ,  A j  E = e j ,  independent of the population 
of the levels, as it should be for an assembly of non-interacting bosons. It is quite 
interesting to note that if 0 < qz < 1 the system behaves as if there is an attractive 
collective interaction: more crowd + easier excitation. If q2 > 1 the system seems to 
possess a repulsive collective interaction. In both cases ( q z  - 1) indicates a measure 
of the strength of this interaction. 

The average occupation number of the j t h  level will be 

when the occupation numbers of the other levels are fixed to be ( n l , n z , .  . . ,n j - , ,  
nj+l. . . . , n,,); this represents a truly conditional mean density at the particular level 
j given that all the other levels are occupied in a certain pattern. It is obvious that 
the distribution (9.4) reduces to the usual boson distribution in the limit q - 1. In the 
case of independent, or single-mode, bosonic q-oscillators the distribution function 
has been discussed in the literature [41]. 
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Now, suppose the states of the system have degeneracies. We shall take the 
Hamiltonian to be 

where the ordering of the level indices (j) is according to cl < eZ < . . . < E, and 
the ordering of the degeneracy indices (k) for each j is k e d  in some fashion. In 
this case the energy spectrum is given by 

Hln,,,n,,, . . . ,nnJ = E((n),*(n)z>'. . ~ ~ ~ ~ , ~ l ~ 1 1 ~ ~ 1 2 ~ "  ' ?%g")  
(9.6) 

It should be noted that the energies depend only on the total wupat ion numbers 
of the levels irrespective of the way in which the states are ordered within each 
degenerate level. 

There can be an alternative interpretation of the above Hamiltonian H. Using 
the boson realization of the As given in section 3 we can write 

(9.7) 

the number operators are now ( b j k b j k ) .  This H with the spectrum as in (9.6), may 
be thought of as a (quantum group inspired) model Hamiltonian for a system of 
interacting ordinary bosons, the interaction being effectively taken into account by 
the nonlinear dependence on the ( b j k b j , ) s  and the phenomenological parameter q. 

The discussion can be extended to a system with bosonic and fermionic degrees 
of freedom obeying relations of the type (7.2). The observations made above for the 
bosonic system are seen to be valid for the qdeformed boson-fermion system with the 
fermionic degrees of freedom obeying the Pauli principle; the effect of qdeformation 
is manifested through the appearance of additional interaction energy. 
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